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Wederive exactmoments of the number of 2-protected nodes in binary search trees grown
from random permutations. Furthermore, we show that a properly normalized version of
this tree parameter converges to a Gaussian limit.
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1. Introduction

The study of 2-protected nodes in classes of random trees is in the vogue. Cheon and Shapiro [1] investigate the average
number of 2-protected nodes in unlabeled, ordered trees and in unary–binary trees (those with 0, 1, or 2 children per node).
Mansour [2] considers the average number of 2-protected nodes in k-ary trees. Recently, Du and Prodinger [3] have analyzed
the average of this parameter in random digital trees, with a uniform probability model.

In this article, we consider the number of 2-protected nodes in a random binary search tree (BST). These are binary trees,
like those in the 2-ary case of Mansour [2], but differ in their underlying probability distribution. Those in [2] are uniformly
distributed, i.e., all trees of the same size (number of nodes) are equally likely. In contrast, the BST grows from a random
permutation that induces a BST probability model, which is nonuniform. The BST model is of prime importance in computer
science as it represents the backbone of some fundamental algorithms, such as Quicksort (see Knuth [4] or Mahmoud [5]),
and are basic efficient data structures in their own right (see Mahmoud [6]).

The BST grows from a uniformly random permutation (π1, π2, . . . , πn), of {1, 2, . . . , n}, as follows. In the computer
science jargon, elements of the permutation are often called keys. The first key π1 goes into the root node of a tree, with
distinguished left and right subtrees (which are empty as of yet). The second key is guided to the left subtree, if it is smaller
than the root key (i.e., if π2 < π1), where it is inserted in a node and linked as a left child of the root; otherwise (i.e., if
π2 > π1) the second key goes into the right subtree, where it is inserted in a node and linked as a right child of the root.
Subsequent keys go to the left or right subtrees, according to whether they are smaller than the root key or not, where
they are inserted recursively in the subtree by the same algorithm. Note that when the permutations of {1, 2, . . . , n} are
equally likely, they give rise to a nonuniform probability distribution on the shapes of BST. We call such distribution the BST
probability model.
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Fig. 1. Example of a binary search tree corresponding to the permutation (5, 9, 6, 4, 7, 2, 3, 1, 8); 2-protected nodes in bold.

This BST probability model is deemedmore relevant to computer science applications than the uniformmodel on binary
trees as it conformsmore closely to the nature of data arising in sorting and searching applications. For instance, data samples
of size n taken from any arbitrary continuous distribution have ranks that are almost surely (since ties occurwith probability
0) a random permutation on {1, 2, . . . , n}. Such real-numbered data can be assimilated by their ranks to build a binary tree
with the aforementioned BST distribution.

A node with no descendants in a BST is a leaf. A node in a BST is said to be a 2-protected node if its distance (measured in
number of edges) to the nearest descendant leaf is at least 2. Fig. 1 shows a BST of size 9 grown from the permutation (5, 9,
6, 4, 7, 2, 3, 1, 8). The nodes represented by bold circles are 2-protected.

In this note, we investigate the number of 2-protected nodes in a BST. Our program does not stop at the derivation of
mean, but continues to find asymptotic distributions.

2. Moments of the number of 2-protected nodes

Let the number of 2-protected nodes in a random BST of size n be Xn. In the tree shown in Fig. 1, X9 = 4. Let Un be the size
in the left subtree of the root, and so n−1−Un is the size of the right subtree. In view of the BST probability model, the root
is equally likely to be any of the numbers in the set {1, 2, . . . , n}. Thus, Un is uniformly distributed on the set {0, . . . , n− 1},
and so symmetrically is n − 1 − Un.

Let Rn be the event that the root node is not 2-protected. Event Rn occurs if:

• the root is a leaf itself (n = 1), or
• both children of the root are leaves (possible when n = 3), or
• the root has exactly one child that is a leaf.

For n ≥ 1, we have a stochastic recurrence for Xn. It is the combined number of 2-protected nodes in the two subtrees
of the root, plus 1 (to account for the root being 2-protected) unless Rn occurs. Thus, we have an equality in distribution,
namely,

Xn
D
= XUn +Xn−1−Un + 1 − 1Rn .

(Note: the tilded randomvariableXn−1−Un is conditionally independent of XUn (givenUn).) The variables X0, X1, X2 are always
0. We are using an indicator notation, i.e., 1Rn = 1, if Rn occurs, and 0 otherwise. Thus, for the moment generating function
φn(t) := E[eXnt ] of Xn, we have

φn(t) = E

e(φUn+φn−1−Un+1−1Rn )t .

When n ≥ 4, we see that Rn only occurs if Un = 1 (i.e., the left child of the root is a leaf) or n − 1 − Un = 1 (i.e., the right
child of the root is a leaf). (For n ≥ 4, both children of the root cannot simultaneously be leaves.) Since XUn and Xn−1−Un are
conditionally independent (given Un), a recurrence ensues by conditioning on Un. Namely, for n ≥ 4, we have

φn(t) =
et

n


0≤k≤n−1

k≠1, k≠n−2

φk(t) φn−1−k(t) +
2
n
φn−2(t)

=
et

n

n−1
k=0

φk(t) φn−1−k(t) +
2
n
φn−2(t)(1 − et). (1)

Differentiating r times with respect to t , then setting t = 0, gives a recursion for E[X r
n]. As r increases, the recurrence

equations quickly become more complicated, a phenomenon commonly called the combinatorial explosion. It is sufficient
for our purpose to get an exact solution for the recurrence relations for the first two moments, and from there we shall
manage to get a shortcut to the higher asymptotic moments.
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For r = 1 and n ≥ 4, we obtain a recurrence for the mean, namely,

E[Xn] =
2
n

n−1
k=0

E[Xk] + 1 −
2
n
. (2)

The recurrence for nE[Xn] can be solved by standard methods such as differencing, for example. If we denote Eq. (2) as S(n),
then for n ≥ 5, we see S(n)−S(n−1) has telescoping sums that disappear, and the resulting linear recurrence can be easily
solved, with boundary conditions E[X0] = E[X1] = E[X2] = 0, E[X3] = 2/3, and E[X4] = 5/6. The boundary condition
n = 4 agrees with the general form, and we get a simple solution for the mean.

Theorem 2.1. Let Xn denote the number of 2-protected nodes in a binary search tree grown from a uniformly chosen random
permutation of {1, . . . , n}. Then we have

E[Xn] =
11
30

n −
19
30

, for n ≥ 4.

For r = 2, we use (1) to develop a recurrence for the second moment:

E[X2
n ] =

2
n

n−1
k=0

E[X2
k ] +

4
n

n−1
k=0

E[Xk] +
2
n

n−1
k=0

E[Xk] E[Xn−1−k] −
4
n
E[Xn−2] +

n − 2
n

,

valid for n ≥ 4. With E[Xk] now determined, we can solve the recurrence for E[X2
k ]. Solving the recurrence for the second

moment is not quite as simple as solving that for the first moment. For instance, differencing does not shave off the sums. A
more straightforward strategy is to guess a solution, then prove it by induction. This procedure yields the following result.

Theorem 2.2. Let Xn denote the number of 2-protected nodes in a binary search tree grown from a uniformly chosen random
permutation of {1, . . . , n}. Then we have

E[X2
n ] =

121
900

n2
−

151
450

n +
53
100

, for n ≥ 8,

and the variance follows:

Var[Xn] = E[X2
n ] − (E[Xn])

2
=

29
225

n +
29
225

, for n ≥ 8.

Note the exact cancellation of the quadratic terms, leaving only a linear variance, which gives a chance for asymptotic
normality to hold, as it fits nicely into the ‘‘two moments and a recurrence paradigm’’ given by Pittel [7].

Moments of arbitrarily high degree can be found similarly. For instance, we have

E[X3
n ] =

1331
27000

n3
−

341
3000

n2
+

10055641
27027000

n −
12566959
27027000

, for n ≥ 12,

E[X4
n ] =

14641
810000

n4
−

847
40500

n3
+

1238257
7371000

n2
−

2515391
6563700

n +
5648494433
13783770000

, for n ≥ 16,

E[X5
n ] =

161051
24300000

n5
+

30613
4860000

n4
+

15266801
221130000

n3
−

527943277
2756754000

n2
+

2207719797571
6110804700000

n

−
319695619487
846111420000

, for n ≥ 20,

etc., and in general, we conjecture the following.

Conjecture 2.1. Let Xn denote the number of 2-protected nodes in a binary search tree grown from a uniformly chosen random
permutation of {1, . . . , n}. For each fixed integer k ≥ 1, there exists a polynomial pk(n) of degree k, the leading term of which is
(11/30)k, such that E[Xk

n ] = pk(n), for all n ≥ 4k.

3. Asymptotic normality

The main result of this note is the following.

Theorem 3.1. Let Xn be the number of 2-protected nodes in a random binary search tree grown from a uniformly chosen random
permutation of {1, . . . , n}. Then Xn, properly normalized, converges in distribution, namely,

Xn −
11
30 n

√
n

D
→ N


0,

29
225


.
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Proof. Let X∗
n = n−1/2(Xn −

11
30n), and

φX∗
n (t) = E


exp


Xn −

11
30 n

√
n

t


= φXn


t

√
n


exp


−

11
30

t
√
n


,

be its moment generating function. The recurrence (1) can be ‘‘normalized’’ in the form

φXn


u

√
n


exp


−

11
30

u
√
n


=

exp


u
√
n


exp


−

11u
30

√
n


n

×

n−1
k=0

φXk


u

√
n


exp


−

11ku
30

√
n


φXn−1−k


u

√
n


exp


−

11(n − 1 − k)u
30

√
n


+

2
n
φXn−2


u

√
n


exp


−

11
30

u
√
n


1 − exp


u
√
n


,

which we can write as

φX∗
n (u) =

exp


u
√
n


exp


−

11u
30

√
n


n

n−1
k=0

φX∗
k


u


k
n


φX∗

n−1−k


u


n − 1 − k

n



+
2
n
φX∗

n−2


u


n − 2
n


exp


11
30

u
√
n − 2 −

11
30

u
√
n


1 − exp


u
√
n


.

In view of Pittel’s paradigm [7], a limit φX∗(u) (the moment generating function of a limiting random variable X∗) exists, as
n → ∞. Passage to the limit in the latter relation yields

φX∗(u) = lim
n→∞

1
n

n−1
k=0

φX∗


u


k
n
c


φX∗


u


n − 1 − k

n


+ lim

n→∞
O(n−3/2).

Put k/n = xk,n to represent the last relation as

φX∗(u) = lim
n→∞

(n−1)/n
xk,n=0

φX∗(u
√
xk,n )φX∗(u

√
xn−1−k,n )∆xk,n,

where ∆xk,n = xk,n − xk−1,n is the difference operator, and the summation index xk,n moves up in increments of size 1/n.
By the usual interpretation of Riemann integrals, we finally write

φX∗(u) =

 1

y=0
φX∗(u

√
y ) φX∗(u


1 − y ) dy.

This integral functional equation has the function ec
2u2/2 as a solution. This function is the moment generating function of

the normal N (0, c2) random variable. By Lévy’s continuity theorem we get the desired convergence in distribution:

Xn −
11
30 n

√
n

D
−→ N (0, c2),

for an appropriate value of c2. Of course, it must be 29
225 , the coefficient of the leading asymptotic term in the variance. �

4. Extended binary search trees

BSTs are often extended by adding special external nodes as children. A sufficient number of these external nodes are
supplied to each original node (now thought of as internal) tomake its outdegree equal to two. In this variant, the 2-protected
nodes are cushioned from the external nodes by at least one internal node. As an example, see Fig. 2, in which we have added
the external nodes to the tree in Fig. 1, and we have again noted the 2-protected nodes for this modified model in bold.

If Xn denotes the number of 2-protected nodes in extended binary trees, then we have

E[Xn] =
1
3
n −

2
3
, for n ≥ 2,

and

Var[Xn] =
2
45

n +
2
45

, for n ≥ 4.
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Fig. 2. Example of an extended binary search tree for the permutation (5, 9, 6, 4, 7, 2, 3, 1, 8); 2-protected nodes in bold.

The corresponding central limit result is

Xn −
1
3 n

√
n

D
−→ N


0,

2
45


.

These results can be obtained by very similar methods as those we applied to the unextended BST. However, most of
these results for extended BSTs are already implied in the published literature. For instance, in the extended BST the
2-protected nodes are the nodes of outdegree 2 in the tree before it got extended. The exact average of these appears in [8].
The asymptotic distribution appears in [9], where he uses an m-dependent central limit theorem for stationary random
variables, due to Hoeffding and Robbins [10]. Mahmoud [11] gives an account of a proof based on modeling by Pólya urn
models. The only thing new here is the exact variance, which we get via the exact second moment,

E[X2
n ] =

1
9
n2

−
2
5
n +

22
45

, for n ≥ 4.

Another new aspect is that we can again use our recursive methods to develop exact higher moments for the number of
2-protected nodes in an extended BST, e.g.,

E[X3
n ] =

1
27

n3
−

8
45

n2
+ +

376
945

n −
122
315

, for n ≥ 6,

E[X4
n ] =

1
81

n4
−

28
405

n3
+

2984
14175

n2
−

5458
14175

n +
218
675

, for n ≥ 8,

E[X5
n ] =

1
243

n5
−

2
81

n4
+

764
8505

n3
−

94
405

n2
+

6956
18711

n −
8654
31185

, for n ≥ 10,

etc. In general, we conjecture the following.

Conjecture 4.1. Let Xn denote the number of 2-protected nodes in an extended binary search tree grown from a uniformly chosen
random permutation of {1, . . . , n}. For each fixed integer k ≥ 1, there exists a polynomial pk(n) of degree k, the leading term of
which is 1/3k, such that E[Xk

n ] = pk(n), for all n ≥ 2k.
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